
Solution of a system of boundary laye? equations 443 

are satisfied. In the above inequalities o = [-ln p (1 - u / U)l’/t, Ki and lt are 

certain positive constants, 0 < ~.t < 1 .and X, > 0 depends on u, r and vo. 

This theorem is the corollary of Theorem 1. 
We note in conclusion that the stipulations and the input data of problem (l), (2) 

formulated in Lemma 4 and Theorems 1 and 2 are somewhat less stringent than the lim- 
itations imposed in [l]. The analysis presented here has to a certain extent improved 
the results obtained in [l] and made it possible to prove the theorem of existence of 
solution of the Cauchy problem for the requirements with respect to external flow, as 
specified in Theorems 1 and 2. 

The author wishes to express his thanks to 0. A, Oleinik, his science instructor, for 

his help and guidance in this work. 
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The formation of a boundary layer over a body which suddenly begins to move 

in a stationary incompressible fluid is analyzed. Proof is given of the existence 

and uniqueness under certain conditions of solution of the related boundary value 
problem defined by the system of Prandtl’s equations in a certain time interval 
0 < t < T and over the whole of the streamlined body. This problem was also 
considered by Blasius [1] who had proposed to solve it by expanding the stream 
function into an asymptotic series in powers of time, and had given the first two 
terms of this expansion in their explicit form. A brief account of these results 

and the mathematical formulation of the problem appear in c2. 31. The problem 
of boundary layer development under conditions of gradual acceleration was 
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examined in [4, S]. 

The problem of boundary layer formation in a plane-parallel symmetric flow past a 
body by sudden motion reduces to the analysis of the following system of equations: 

Ut + u&c + vu, = - pr + vuuu, 24, + vy = 0 (1) 

in region DT (0 < t & T, 0 ,( I ,( X, 0 < Y < co) with conditions 

u It-O = u (0, xc), t&a = 0 for t >O, ~~LMl= 0 

v jr+0 = no (G x)9 u.+U(t, 2) for y-00 (2) 

where u and v are velocity components, u (t, z) is the longitudinal velocity compo- 
nent of the external stream, U (t, 0) = 0, U (t, z) > 0 for IX: > 0 and -pr = 
Ut + UU,. Substituting the independent variables 

- 

T=V< %=x, 1]=U/U (3) 

and introducing the new unknown function 

t+,%,rl)=V&//U (4) 

we reduce system (1) with conditions (2) to a single equation 

vw=w,, - ‘lszwt - ‘caqUwc f Aw, f Bw = 0, (5) 

in region 52 (0 < t < 1/F, 0 < % < X, 0 < q < 1) with boundary conditions 

w I,.=1 = 0 (vww, - ‘Gvow + C) I@ = 0 (6) 

A = 9 (q2 - 1) U, + z2 (q - 1) $, B = - 7~2u, - ~2 $L. + + 

C=TW,-+ 

With the use of the method of straight lines [S] we shall prove the existence of solution 
of the problem (5). (6) and establish certain estimates for w.Using transformations (3) 

and (4) we obtain ‘formulas which are required for determining u and v of problem (1) 
with conditions (2). 

We denote f(kh, Zh, r), h w ere h = conat > 0, in the arbitrary function f (r, %, 1) 

by f”* ’ h) , and substitute for Eq. (5) with conditions (6) the system of ordinary differen- 

tial equations Lk,’ cw) ~ v (,k,l)z w;;7 ; ,Ic” -hWk-l’l _ 

_ (rl + Ail) (,!&)2 uk,’ ,“’ i,,+’ ; Ak,‘wk/ + Bk,lwk,’ = 0 

k = 0, 1, . . ., l=O,l, . ..) + 1 1 (3 
along the segment 0 < q < 1 with conditions 

t&l (1) = 0, 2’)’ (w) E (vrLA~w)*lJ - khv;*LWkJ~ + C”?‘) llZO = 0 (8) 

In Eqs. (7) h is a sufficiently great positive constant independent of h. 
Henceforth Ci and Mi will denote positive constants independent of h and 0, = 

l/le--;Ll-rl),where O<r<land OGV<I. 
. let us assume that 

u, + u, / u > 0, u, (0, 0) > 0, vg < Mitl+E, e > 0, l VOX I6 hfzz, 
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and functions uo, u, U,, UJ U, U,,, U,, (U, / U), are bounded, and (U, / U) > 
- M,U in a certain neighborhood of x = 0. Then, for 0 < lh < X and 0 < kh < Jf/?i; 

where T depends on 17, v,, and Y, the system of Eqs. (7) with conditions (8) has the 
solution UI’J’ (q) h’ h w rc is continuous for 0 < TJ < 1, has a continuous third-order deri- 

vative for 0 < q<l , and satisfies the inequalities 

C,(l -IJ)G&~wk~‘<Cc,(.l -q)q+ o<PI<*<r<l (9) 

Furthermore, the following estimates are valid: 

1 (WV - w ‘+‘) / 4 I < G (I- rl) $1 (10) 

1 (Wk,l - Wk--l.l )/+zXC,(1-+p, (11) 

- C& < wlkJ < cl@ (rl) (12) 

where CD(q) =-~rl’dforO<~<l-~and@((rl)=-oPfor(~-~6)<~<1and 

1 wkJw$ 1 <c,, wk*lw3;;f < - 1 / (4v) (13) 

The existence of functions IL*~,~ (Q) (I = 0, 1, . . . , [X / h]) and of estimate (9) for 
wO.Z readily follow from Eqs. (7) for k = 0, while for k > 1 the solution IU~*~ of the sys- 

tern of Eqs. (7) with conditions (8) is obtained as the limit for rr + 0 of solutions of the 

system 

L’s’ (w) + em $;=O, e1>0, I<k<[l/F/Ih], Of2<[Xlh] 

with conditions (8). The proof of this and of estimates (9) is similar to that of Lemmas 

3 and 4 in [6]. To prove the estimates (10) - (12) we use the equations and boundary 
conditions which are satisfied by the following quantities: 

,kJ = (w k,r _ u,k,I-l) , h, ,,k.’ = twkJ - wk-l.Iy h, zkez = ~2’ 

For example, function rkYz satisfies equation 

Rk’ (,A’) = I&’ (W) _ ~“+l (w)] /h = 0 

and the boundary conditions 

,kJ (1) = 9, hksr (&l) = ]PJ (w) - lk.r-r (IL.)] /h = 0 for n = 0 

Now, assuming that the inequalities (10) - (12) are satisfied fort wk”” h) when. k’ < 
( k - 1 ), k’ = k and 2’ < 1 - l,we can prove that for sufficiently small T these ine- 

qualities are also valid for k’ = k and 1’ - 1. Proof of this is similar to that of Lemma 

9 in [S]. Inequalities (13) are the consequence of estimates (10) - (12) and are derived 

from Eqs. (7). 
Theorem 1. Let the conditions of the lemma be fulfilled. Then in the region 

Q{O<~<~/T,O<KK O<rlsl}f or any .X and a certain T dependent 
on U, v,, and v there exists a solution of problem (5). (6) which has the following 
properties: w is continuous in 52 ; C, (1 --$a, < w < C, (1 - q&r,,; function ZfJli 
is continuous with respect to q for q < 1; -C6’sy, & w, & C, @ (q), where CD is 
the function defined in the lemma; 1 WE 1 & Cs (1 - q)o,,; 1 w+ 1 & (‘4 (1 - q) 

%,1 wwnn is bounded, and ww,,,, < - 1 / (4~). This function satisfies almost every - 

where Eq. (5) and conditions (6) in space 0 . These properties are unique to the solut- 

ion of problem (5) (6). 
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The existence of solution 10 of problem (5). (6) which has the above properties follows 

from the solution ujk, 1 of problem (7) (8) and estimates (9) - (13). To prove the unique- 

ness of the solution of problem (5), (6) we examine the remainder w1 - 1~2 = W of two 

solutions of this problem. Function W satisfies equation 

with boundary conditions 

+A~+Yllr2*n2$..W=0 

W I W 

n-1 
=o, (. VW,-c- =o )I wiws 11-o 

Let us consider 

s 
P (W) We+‘dzdEdq = 0, u = const > 0 (14) 

n 

Integrating by parts the derived integrals, from (14) we obtain an inequality of the form 

s K (WI, WA, z, 5, TV, a) W2e-asdzdE;dq > 0 (15) 
aa 

where for sufficiently great a function K (wl, w, T, 5, q, a) < 0. Hence it follows 

from (15) that W E 0, i. e. , q E a. 
Theorem 2. Let us assume that functions U,, U,,, Ut I U, (U, I U),, 

vt U,,,Vt(UJU) t, u. and v t VOW are bounded, U, (0, 0) > 0, (U, -I- Ut / 
la-)> 0 and - M,U & iJt I U for small z. Let also ua < Mt’l~+‘, e > 0, and 1 Uor 
\& hl,t’~~.Then in region QT, where T is dependent on U, v,, and V [here exists a 

unique solution for u and u of problem (l), ($), which has the following properties: u/TJ 

is continuous for t > 0 : l/&,, / U is bounded and continuous; TV --f U , when y +- 

CC ; ZL and t, satisfy conditions (2). and uy, uX, .uyt,, ut and vy are bounded and 

continuous for t > 0. The equations of system (1) are satisfied almost everywhere in ; 
DT. Furthermore, the following inequalities are valid: 

c, (1 - +) by (+) < -+&C, (1 - -g) Qp, (+) 

u (t, x) exp (- -!$f- - “’ ‘- In ‘I ) < U (t, x) -‘u < 

< U (t, z) esp 
i 

C JT * 2 

-*- 

Cw V- In P 

l/t 1 

(16) 

(17) 

The proof of this theorem is similar to that of Theorem 2 in [6] and in [4]. 

Estimates (17) define the rate at which u (2, IC, y) tend to U (t, x) when y --t cx 

and, also, the behavior of u at small i and fixed 5 and y, which is associated with 

the rate of the boundary layer build-up. Inequalities (17) also imply that function 11 

satisfies conditions (2). Estimates of the form (17) are also valid for the sum of the first 

terms of the expansion of function u in powers of time determined by Blasius in [l]. 

It follows from (3) and (4) that the approximate solution u ((J%)~, Zh, y) of problem 

(1). (2) can be derived with the use of functions wkvi by formula 

x 
ds u ((kh)‘, Ih, Y) 

GqFj’ I1 = U ((kh)A, Ih) 



1. Blasius, H., Grenzschichten in Fldssigkeiten mit kleiner Reibung. 2. Math. und 

Phys. t Vol. 56, Wl, 1908. 
2. Loitsianskii, L. G., Laminar Boundary Layer, Fizmatgiz, Moscow, 1962. 
3. Schlichting, H., Theory of the Lamfnar Layer (Russian translation), Izd, Inostr. 

Lit., Moscow, 1956. 

4. 0 leinik, 0, A., Boundary layer generation during gradual acceleration, Sib. 

Matem. Zh., Vol. 9, N%, 1968. 

5. 0 leinik, 0, A., Approximate solutions and asymptotic expansions for the prob- 

lem of boundary layer development during acceleration, PMM, Vol. 33, N’3.1969. 

6. 0 leinik, 0. A., Mathematical problems of the boundary layer theory, Uspekhi 
Matem, Nat&, Vo1.23, N3, 1968, 

On the plane-parallel synunetric boundary Layer 447 

The author thanks 0. A. Oleinik for his interest in this work, 

BIBLIOGRAPHY 

Translated by J. I. D . 

UDC 532.72 

DXF~SION ON A PARTIC~ XN THE SHEAR FLOW OF A VISCOUS FLUID, 

APPROXIMATION OF THE DIFFUSION BOUNDARY LAYER 

PMM Vol.36, NP3, 19’72, pp.475-479 
Iu. P, GUPALO and 1u.S. RIAZANTSEV 

(Moscow) 
(Received February 10, 1972) 

The steady convective diffusion on the surface of a particle of a substance diss- 

olved in a uniform shear flow of viscous flow is considered. The problem of diff- 

usion on a solid sphere and a spherical drop is solved in the approximation of 

the diffusion boundary layer. 
Determination of diffusion afflux of a substance (or heat) on the surface of a mo- 
ving particle is one of the fundamental problems of physicochemical hydrodyna- 

mics related to the theory of combustion, chemical reactors, in particular those 

with suspended layers, to the theory of coagulation and flocculation of disperse 

systems, deposition of aerosols, and in numerous other applications. 

The analytical solutions obtained so far relate only to straight, uniform at infin- 
ity, laminar flows past particles at Iow Reynolds numbers [l - 61. 
Here an approximate analytical expression is derived for the diffusing stream of 
a substance on the surface of a spherical particle in a uniform laminar shear 

flow. Stokes’ approximation derived in [‘7] is used for determining the shear flow 

field. It is assumed that the P&let number is considerable so that the equation 
of convective diffusion can be expressed in terms of boundary layer approxima- 

tion, 

1. Statement of problem, Let us consider a spherical particle carried along 
by a stream of viscous incompressible fluid in a steady uniform shear flow. In an 


